Junior prolem

Pham Quang Toan, Dang Thai Mai secondary school, Vinh city, Vietnam

September, 8th, 2013

J276. Find all positive integers m and n such that

$$
10^{n}-6^{m}=4 n^{2}
$$

Solution 1. First, we prove a lemma.
Lemma 1. If $a \in \mathbb{N}, a \geq 2$ then $10^{a}>6^{a}+4 a^{2}$.
Proof. If $a=2$ then $10^{2}>6^{2}+4 \cdot 2^{2}$. Assume that the inquality still true with $n=k(k \in$ $\mathbb{N}, k \geq 2$), that means $10^{k}>6^{k}+4 k^{2}$.
We will prove that $10^{k+1}>6^{k+1}+4(k+1)^{2}$. The inequality is equivalent to $10\left(10^{k}-6^{k}\right)+$ $4 \cdot 6^{k}>4 k^{2}+8 k+4$.
We have $10\left(10^{k}-6^{k}\right)+4 \cdot 6^{k}>10 \cdot 4 k^{2}+4 \cdot 6^{k}$. Since $k \geq 2$ then $9 \cdot k^{2}>8 k+4$. Thus, $10 \cdot 4 k^{2}+4 \cdot 6^{k}>4 k^{2}+8 k+4$.
Thus, $10^{a}>6^{a}+4 a^{2}$.
If $n=1$ then $m=1$. If $n=2$ or $n=3$ then there is no such m.
If $n \geq 4$, from the lemma 1 we obtain that $6^{m}>6^{n}$. Hence $m>n \geq 4$.
Case 1. If n is odd then $4 n^{2} \equiv 4(\bmod 16)$ and $10^{n} \equiv 0(\bmod 16)$ since $n \geq 4$. Therefore $6^{m} \equiv 12(\bmod 16)$. It follows that $m=2$, a contradiction.
Case 2. If n is even, we let $n=2 n_{1}\left(n_{1} \in \mathbb{N}, n_{1} \geq 2\right)$. We also have $4 n^{2} \equiv 0,1,2,4$ (mod 7).
We will prove that m is even.

1. If $3 \mid n_{1}$ then $3 \mid 4 n^{2}$ and $3 \mid 6^{m}$ so $3 \mid 10^{n}$, a contradiction.
2. If $n_{1}=3 k+1(k \in \mathbb{N}, k \geq 1)$ then by Fermat's Little Theorem we have $10^{n}=$ $10^{6 k+2} \equiv 10^{2} \equiv 2(\bmod 7)$. If m is odd then $6^{m} \equiv 6(\bmod 7)$, a contradiction since $10^{n}-4 n^{2} \equiv 0,1,2,5(\bmod 7)$. Thus, m is even in this case.
3. If $n_{1}=3 k+2$ then $10^{n}=10^{6 k+4} \equiv 4(\bmod 7)$. If m is odd then $6^{m} \equiv 6(\bmod 7)$, a contradiction since $10^{n}-4 n^{2} \equiv 0,2,3,4(\bmod 7)$.

Thus, m is even. Let $m=2 m_{1}\left(m_{1} \in \mathbb{N}, m_{1}>2\right)$. The equation is equivalent to

$$
\begin{equation*}
\left(10^{n_{1}}-6^{m_{1}}\right)\left(10^{n_{1}}+6^{n_{1}}\right)=16 n_{1}^{2} \tag{1}
\end{equation*}
$$

Since $m>n$ then from (1) we obtain

$$
2^{2 n_{1}}\left(5^{n-1}-2^{m_{1}-n_{1}} \cdot 3^{m_{1}}\right)\left(5^{n_{1}}+2^{m_{1}-n_{1}} \cdot 3^{m_{1}}\right)=16 n_{1}^{2}
$$

Let $n_{1}=2^{q} \cdot k(q, k \in \mathbb{N}, 2 \nmid k)$. then the equation is equivalent to

$$
\left(5^{n-1}-2^{m_{1}-n_{1}} \cdot 3^{m_{1}}\right)\left(5^{n_{1}}+2^{m_{1}-n_{1}} \cdot 3^{m_{1}}\right)=\frac{2^{2 q+4}}{2^{2^{q+1} \cdot k}} \cdot k^{2}
$$

Since $m>n$ then $m_{1}>n_{1}$. Therefore LHS $\equiv 1(\bmod 2)$. Thus, $2^{2 q+4}=2^{2^{q+1} \cdot k}$ or $q+2=2^{q} \cdot k$.
It is easy to prove by induction that if $q \geq 1, k \geq 3$ then $2^{q} \cdot k>2 q+4$. It follows that $k=1$, that means $L H S=1$, a contradiction.
Thus, the only solution is $(m, n)=(1,1)$.
Solution 2. From the solution 1, we have that if $n \geq 4$ then $m>n \geq 4$ and n is even. Let $n=2^{q+1} \cdot k,(q, k \in \mathbb{N}, 2 \nmid k)$. The equation is equivalent to

$$
2^{2 q+4}\left(2^{n-2(q+2)} \cdot 5^{n}-k\right)\left(2^{n-2(q+2)} \cdot 5^{n}+k\right)=2^{m} \cdot 3^{m}
$$

From here we obtain $m=2 q+4$ but $m>n$ or $q+2>2^{q} \cdot k$. Thus, $k=1, q=0$ or $k=1, q=1$ which gives $n=2$ or $n=4$, a contradiction.
Thus, $(m, n)=(1,1)$.

