Junior prolem

Pham Quang Toan, Dang Thai Mai secondary school, Vinh city, Vietnam

September, 8th, 2013

J276. Find all positive integers m and n such that

$$10^n - 6^m = 4n^2$$

Solution 1. First, we prove a lemma. **Lemma 1.** If $a \in \mathbb{N}, a \ge 2$ then $10^a > 6^a + 4a^2$. *Proof.* If a = 2 then $10^2 > 6^2 + 4 \cdot 2^2$. Assume that the inquality still true with n = k ($k \in \mathbb{N}, k \ge 2$), that means $10^k > 6^k + 4k^2$. We will prove that $10^{k+1} > 6^{k+1} + 4(k+1)^2$. The inequality is equivalent to $10(10^k - 6^k) + 4 \cdot 6^k > 4k^2 + 8k + 4$. We have $10(10^k - 6^k) + 4 \cdot 6^k > 10 \cdot 4k^2 + 4 \cdot 6^k$. Since $k \ge 2$ then $9 \cdot k^2 > 8k + 4$. Thus, $10 \cdot 4k^2 + 4 \cdot 6^k > 4k^2 + 8k + 4$. Thus, $10^a > 6^a + 4a^2$.

If n = 1 then m = 1. If n = 2 or n = 3 then there is no such m. If $n \ge 4$, from the lemma 1 we obtain that $6^m > 6^n$. Hence $m > n \ge 4$.

Case 1. If n is odd then $4n^2 \equiv 4 \pmod{16}$ and $10^n \equiv 0 \pmod{16}$ since $n \geq 4$. Therefore $6^m \equiv 12 \pmod{16}$. It follows that m = 2, a contradiction. **Case 2.** If n is even, we let $n = 2n_1 (n_1 \in \mathbb{N}, n_1 \geq 2)$. We also have $4n^2 \equiv 0, 1, 2, 4 \pmod{7}$.

We will prove that m is even.

- 1. If $3|n_1$ then $3|4n^2$ and $3|6^m$ so $3|10^n$, a contradiction.
- 2. If $n_1 = 3k + 1$ $(k \in \mathbb{N}, k \ge 1)$ then by Fermat's Little Theorem we have $10^n = 10^{6k+2} \equiv 10^2 \equiv 2 \pmod{7}$. If *m* is odd then $6^m \equiv 6 \pmod{7}$, a contradiction since $10^n 4n^2 \equiv 0, 1, 2, 5 \pmod{7}$. Thus, *m* is even in this case.
- 3. If $n_1 = 3k + 2$ then $10^n = 10^{6k+4} \equiv 4 \pmod{7}$. If *m* is odd then $6^m \equiv 6 \pmod{7}$, a contradiction since $10^n 4n^2 \equiv 0, 2, 3, 4 \pmod{7}$.

Thus, m is even. Let $m = 2m_1$ $(m_1 \in \mathbb{N}, m_1 > 2)$. The equation is equivalent to

$$(10^{n_1} - 6^{m_1})(10^{n_1} + 6^{n_1}) = 16n_1^2 \qquad (1)$$

Since m > n then from (1) we obtain

$$2^{2n_1}(5^{n-1} - 2^{m_1 - n_1} \cdot 3^{m_1})(5^{n_1} + 2^{m_1 - n_1} \cdot 3^{m_1}) = 16n_1^2$$

Let $n_1 = 2^q \cdot k \ (q, k \in \mathbb{N}, \ 2 \nmid k)$. then the equation is equivalent to

$$(5^{n-1} - 2^{m_1 - n_1} \cdot 3^{m_1})(5^{n_1} + 2^{m_1 - n_1} \cdot 3^{m_1}) = \frac{2^{2q+4}}{2^{2q+1} \cdot k} \cdot k^2$$

Since m > n then $m_1 > n_1$. Therefore $LHS \equiv 1 \pmod{2}$. Thus, $2^{2q+4} = 2^{2^{q+1} \cdot k}$ or $q+2 = 2^q \cdot k$.

It is easy to prove by induction that if $q \ge 1, k \ge 3$ then $2^q \cdot k > 2q + 4$. It follows that k = 1, that means LHS = 1, a contradiction. Thus, the only solution is (m, n) = (1, 1).

Solution 2. From the solution 1, we have that if $n \ge 4$ then $m > n \ge 4$ and n is even. Let $n = 2^{q+1} \cdot k$, $(q, k \in \mathbb{N}, 2 \nmid k)$. The equation is equivalent to

$$2^{2q+4}(2^{n-2(q+2)} \cdot 5^n - k)(2^{n-2(q+2)} \cdot 5^n + k) = 2^m \cdot 3^m$$

From here we obtain m = 2q + 4 but m > n or $q + 2 > 2^q \cdot k$. Thus, k = 1, q = 0 or k = 1, q = 1 which gives n = 2 or n = 4, a contradiction. Thus, $\boxed{(m, n) = (1, 1)}$.